Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/124822
Title: Luminescence properties of Ce3+ and Tb3+ co-doped SiOxNy thin films: prospects for color tunability in silicon-based hosts
Author: Ramírez Ramírez, Joan Manel
Ruiz Caridad, Alicia
Wojcik, J.
Gutierrez, A. M.
Estradé Albiol, Sònia
Peiró Martínez, Francisca
Mascher, P.
Garrido Fernández, Blas
Keywords: Pel·lícules fines
Luminescència
Nitrogen
Thin films
Luminescence
Nitrogen
Issue Date: 2016
Publisher: American Institute of Physics
Abstract: In this work, the role of the nitrogen content, the annealing temperature, and the sample morphology on the luminescence properties of Ce3+ and Tb3+ co-doped SiOxNy thin films has been investigated. An increasing nitrogen atomic percentage has been incorporated in the host matrix by gradually replacing oxygen with nitrogen during fabrication while maintaining the Si content unaltered, obtaining a sequential variation in the film composition from nearly stoichiometric SiO2 to SiOxNy. The study of rare earth doped single layers has allowed us to identify the parameters that yield an optimum optical performance from Ce3+ and Tb3+ ions. Ce3+ ions proved to be highly sensitive to the annealing temperature and the nitrogen content, showing strong PL emission for relatively low nitrogen contents (from 0 to 20%) and moderate annealing temperatures (800-1000 °C) or under high temperature annealing (1180 °C). Tb3+ ions, on the other hand, displayed a mild dependence on those film parameters. Rare earth co-doping has also been investigated by comparing the luminescence properties of three different approaches: (i) a Ce3+ and Tb3+ co-doped SiOxNy single layer, (ii) a bilayer composed of two SiOxNy single layers doped with either Ce3+ or Tb3+ ions, and (iii) a multilayer composed of a series of either Tb3+ or Ce3+-doped SiOxNy thin films with interleaved SiO2 spacers. Bright green emission and efficient energy transfer from either Ce3+ ions or Ce silicates to Tb3+ ions has been observed in the co-doped single layer as a consequence of the strong ion-ion interaction. On the other hand, independent luminescence from Ce3+ and Tb3+ ions has been observed in the Ce3+ and Tb3+ co-doped bilayer and multilayer, providing a good scenario to develop light emitting devices with wide color tunability by varying the number of deposited films that contain each rare earth dopant. Moreover, the optoelectronic properties of Ce3+- and/or Tb3+-doped thin films have been studied by depositing transparent conductive electrodes over selected samples. An electroluminescence signal according to the rare earth transitions is obtained in all cases, validating the excitation of Ce3+ and Tb3+ ions upon electron injection. Also, the main charge transport of injected electrons has been evaluated and correlated with the layer stoichiometry. Finally, a simple reliability test has allowed disclosing the origin of the early breakdown of test devices, attributed to the excessive joule heating at filament currents that occur around a region close to the polarization point.
Note: Reproducció del document publicat a: https://doi.org/10.1063/1.4944433
It is part of: Journal of Applied Physics, 2016, vol. 119, p. 113108-1-113108-13
URI: http://hdl.handle.net/2445/124822
Related resource: https://doi.org/10.1063/1.4944433
ISSN: 0021-8979
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
664519.pdf2.32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.