Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/125095
Title: Numerical methods in classical mechanics: differential equations
Author: Molins Marconi, Germán F.
Director/Tutor: González-Miranda, J. M. (Jesús Manuel)
Keywords: Mecànica
Equacions diferencials
Treballs de fi de grau
Mechanics
Differential equations
Bachelor's thesis
Issue Date: Jun-2018
Abstract: A revision of different first order ODE numerical integration schemes is presented in the ambit of classical mechanics. Their performance is tested on a rescaled SHO, and their traits and effciency discussed. From these, an RK4 method is chosen to study a Duffng-Holmes oscillator. Its nonlinearity is shown to cause a period-doubling route to chaos through the exploration of a particular range of the forcing amplitude parameter using a bifurcation diagram
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutor: Jesús M. González Miranda
URI: http://hdl.handle.net/2445/125095
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
Molins Marconi Germán Federico.pdf982.74 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons