Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/125167
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFagella Rabionet, Núria-
dc.contributor.authorCamps Pallarès, Joan Maria-
dc.date.accessioned2018-10-09T09:11:20Z-
dc.date.available2018-10-09T09:11:20Z-
dc.date.issued2018-06-27-
dc.identifier.urihttp://hdl.handle.net/2445/125167-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Núria Fagella Rabionetca
dc.description.abstract[en] The study of dynamics of holomorphic functions near a fixed point has led to numerous works since the end of the nineteenth century, and the Siegel linearization problem plays an important role in this branch of the theory of dynamical systems in one complex variable. The natural way of studying the dynamics of a system near a fixed point is finding a local change of cordinates to represent this system in a simpler way. If $f+$ is a holomorphic function with a fixed point $z_{0} = f (z_{0})$, and multiplier $\lambda = f'(z_{0}) \in S^{1}, \lambda = e^{2\pi i \alpha}$ for an irrational number $\alpha$, we say that f is linearizable if it’s locally conjugated to the linear system $g(z) =\lambda z$. Then, Siegel’s problem consists in describing completely the family of numbers $\alpha$ for which every local system $f$ with multiplier $\lambda$ is linearizable. The contributions of H. Cremer and, specially, of C.L. Siegel to the problem, represent a big step in understanding it's trickyness, as well as the importance of the role that the arithmetical nature of $\alpha$ plays in it. The techniques introduced by J.C. Yoccoz in his resolution of Siegel’s problem, at the end of the past century, have inspired other results to help understanding the dynamics of $f$ in the non-linearizable case, yet not fully understood nowadays.ca
dc.format.extent57 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Joan Maria Camps Pallarès, 2018-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationFuncions holomorfesca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationSistemes dinàmics diferenciablesca
dc.subject.classificationTeoria del punt fixca
dc.subject.classificationFuncions analítiquesca
dc.subject.otherFuncions holomorfesen
dc.subject.otherBachelor's theses-
dc.subject.otherDifferentiable dynamical systemsen
dc.subject.otherFixed point theoryen
dc.subject.otherAnalytic functionsen
dc.titleLinearització conforme de punts fixos el·lípticsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria594.96 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons