Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTravesa i Grau, Artur-
dc.contributor.authorGarcia Tarrach, Guillem-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Artur Travesa i Grauca
dc.description.abstract[en] The ring of integers is a unique factorization domain, but, in general, this isn’t the case for the ring of integers of a number field. The class number 1 problem consists in giving a complete list of all imaginary quadratic fields whose ring of integers is a unique factorization domain. In this thesis we provide an adaptation of Kurt Heegner’s original solution including an overview of the required theoretical tools, namely class field theory and the theory of elliptic curves with complex
dc.format.extent49 p.-
dc.rightscc-by-nc-nd (c) Guillem Garcia Tarrach, 2018-
dc.subject.classificationTeoria algebraica de nombresca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationAnells (Àlgebra)ca
dc.subject.classificationTeoria de cossos de classeca
dc.subject.classificationCorbes el·líptiquesca
dc.subject.classificationFormes quadràtiquesca
dc.subject.otherAlgebraic number theoryen
dc.subject.otherBachelor's thesis-
dc.subject.otherRings (Algebra)en
dc.subject.otherClass field theoryen
dc.subject.otherElliptic curvesen
dc.subject.otherQuadratic formsen
dc.titleEl problema del nombre de classes 1ca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria472.86 kBAdobe PDFView/Open
Codi font.zipCodi font1.2 kBzipView/Open

This item is licensed under a Creative Commons License Creative Commons