Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/126003
Title: Identification of novel NEK9 substrates and functions through the use of genetically engineered mice. Novel roles in the control of the centrosome cycle
Author: Martínez Delgado, Paula
Director/Tutor: Roig Amorós, Joan
Keywords: Mitosi
Cromosomes
Càncer
Mitosis
Chromosomes
Cancer
Issue Date: 11-Oct-2018
Publisher: Universitat de Barcelona
Abstract: [eng] Mitosis is a process that ensure the correct distribution of the chromosomes between the two newly generated cells, is tightly regulated by two main processes, protein degradation controlled by the APC and protein phosphorylation by different mitotic kinases. CDK1 is the master regulator of mitosis but in the last decades proteins from the Aurora or Polo or the NIMA family have been shown to play key roles in mitosis. The objective of this thesis is to identify new roles during the cell cycle and more specifically the late phases of mitosis of Nek9, a NIMA-related kinase. We aim to characterize new substrates and functions of the kinase by using different cell lines and genetically modified mice and interfering with Nek9 expression. The centrosome acts as the major microtubule-organizing center (MTOC) of the cell to maintain cytoskeleton in interphase and to organize the bipolar spindle in mitosis, and its duplication cycle is coupled with the cell cycle. When the cell enters mitosis, the duplicated centrosomes separate to the spindle poles and assemble the bipolar mitotic spindle for accurate chromosome separation and to maintain genomic stability. However, centrosome aberrations occur frequently and often lead to abnormal mitotic spindle formation, which can result in abnormal chromosome segregation and as a consequence tumorigenesis, microcephaly or ciliopathies. Nek9 is inactive during interphase and activated at centrosomes and spindle poles during mitosis by a two-step mechanism mediated by Plk1 and CDK1. Once active, Nek9 is able to bind Nek6 and Nek7 and directly phosphorylate these kinases inducing in turn their activation. Our group has shown that Nek6/7 phosphorylates the kinesin Eg5 at Ser1033 in the C-terminal domain, modulating the accumulation of Eg5 at or around centrosomes and their separation during prophase. Nek9 also phosphorylates the adapter NEDD1/GCP-WD, independently of Nek6/7, contributing to its recruitment to the centrosome and in consequence, to the recruitment of the microtubule nucleating complex formed by y-tubulin to the same organelle. Thus, Nek9, Nek7 and Nek6 regulate different aspects of the centrosome machinery during the entry in mitosis and have a role in spindle organization and correct mitotic progression. Here we show that animals with a single Nek9 KO allele are healthy and fertile but intercrosses between them have not resulted in any homozygous null animals among born offspring indicating that the deletion of Nek9 is embryonic lethal. Also embryos obtained from these intercrosses had a higher frequency of mitotic abnormalities that result in death during the first days of development. As Nek9 is important for the proper development of mitosis we checked whether the expression in heterozygosity of Nek9 results in tumors affecting the viability of the animals. Some differences in tumor-free lifespan between heterozygous and wild type animals have been observed, with the appearance of tumors and aneuploidy. In addition, elimination of Nek9 expression lead to the apparition of abnormal mitosis, aneuploidy and multiple centrosomes both in genetically engineered MEFs and human cells, resulting in accumulation of centrobin, a protein mostly associated with the daughter centrioles, in the amplified centrioles. In the present thesis we describe possible new functions and substrates of Nek9 in the centrosome cycle, closely linked to the cell division cycle, after interfering with its expression using different strategies.
[spa] La mitosis es un proceso que asegura la distribución correcta de los cromosomas entre dos células recién generadas, está regulada por dos procesos principales, la degradación y la fosforilación de proteínas por diferentes quinasas mitóticas. CDK1 es el principal regulador de la mitosis, pero en las últimas décadas se ha demostrado que las proteínas de la familia Aurora o Polo o NIMA desempeñan un papel clave en la mitosis. El objetivo de esta tesis es identificar nuevas funciones de Nek9, una quinasa de la familia NIMA, durante el ciclo celular y más específicamente durante las fases tardías de la mitosis. Nuestro objetivo es caracterizar nuevos sustratos y funciones de la quinasa mediante el uso de diferentes líneas celulares y ratones genéticamente modificados que nos permiten interferir con la expresión de Nek9. El centrosoma actúa como el principal centro organizador de microtúbulos de la célula para mantener el citoesqueleto en interfase y para organizar el huso bipolar en la mitosis, su ciclo de duplicación va en sintonía con el ciclo celular. Cuando la célula entra en mitosis, los centrosomas duplicados se separan ensamblando el huso mitótico para segregar los cromosomas y para mantener la estabilidad genómica. Sin embargo, diferentes aberraciones ocurren con frecuencia en el centrosoma y a menudo conducen a la formación anormal del huso mitótico, que puede dar como resultado una segregación cromosómica anormal y, como consecuencia, tumorogénesis, microcefalia o ciliopatias. Nek9 está inactiva en interfase y se activa en los centrosomas durante la mitosis mediante un mecanismo de dos pasos mediado por Plk1 y CDK1. Una vez activo, Nek9 se puede unir a Nek6 y Nek7 y fosforilarlas induciendo a su vez su activación. Nuestro grupo ha demostrado que Nek6/7 fosforilan la quinesina Eg5, modulando la acumulación de Eg5 en los centrosomas y su separación durante la profase. Nek9 también fosforila el adaptador NEDD1 / GCP-WD, independientemente de Nek6/7, lo que contribuye a su reclutamiento en el centrosoma y, en consecuencia, al reclutamiento del complejo de nucleación de microtúbulos formado por y-tubulina. Aquí mostramos que los animales con un único alelo Nek9 KO están sanos y son fértiles. Sin embargo, los cruces entre ellos no dan lugar a ningún animal KO homocigoto, lo que indica que la eliminación de Nek9 es letal durante el desarrollo embrionario. Además, los embriones procedentes de estos cruces tienen una mayor frecuencia de defectos mitóticos que provocan la muerte durante los primeros días de desarrollo. Como Nek9 es importante para el correcto desarrollo de la mitosis, queríamos ver si la expresión en heterocigosis daba como resultado tumores que afectan la viabilidad de los animales. Se han observado algunas diferencias en la esperanza de vida libre de tumores entre los heterocigotos con cierta incidencia de cáncer y aneuploidía. Por otro lado, la eliminación de la expresión de Nek9 en células conduce a la aparición de mitosis anormales, aneuploidía y múltiples centrosomas, tanto en fibroblastos embrionarios de ratón genéticamente modificados como en células humanas teniendo como consecuencia la acumulación de centrobina, una proteína presente en los procentriolos. En la presente tesis describimos posibles nuevas funciones y sustratos de Nek9 en el ciclo del centrosoma, íntimamente ligado al ciclo de división celular, tras interferir con su expresión de diferentes formas.
URI: http://hdl.handle.net/2445/126003
Appears in Collections:Tesis Doctorals - Departament - Bioquímica i Fisiologia

Files in This Item:
File Description SizeFormat 
PMD_PhD_THESIS.pdf21.54 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 11-10-2019


This item is licensed under a Creative Commons License Creative Commons