Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/126625
Title: Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure
Author: Carbone, Carmelita
Mangilli, Anna
Verde, Licia
Keywords: Cosmologia
Barions
Acústica
Cosmology
Baryons
Acoustics
Issue Date: Sep-2011
Publisher: Institute of Physics (IOP)
Abstract: We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter fiso, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(fiso) ~ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.
Note: Versió preprint del document publicat a: https://doi.org/10.1088/1475-7516/2011/09/028
It is part of: Journal of Cosmology and Astroparticle Physics, 2011, vol. 09, num. 028
URI: http://hdl.handle.net/2445/126625
Related resource: https://doi.org/10.1088/1475-7516/2011/09/028
ISSN: 1475-7516
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
612879.pdf311.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.