Please use this identifier to cite or link to this item:
Title: Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data
Author: Bolancé Losilla, Catalina
Cao, Ricardo
Guillén, Montserrat
Keywords: Avaluació del risc
Estadística no paramètrica
Assegurances d'accidents
Risk assessment
Nonparametric statistics
Accident insurance
Issue Date: 2018
Publisher: Universitat de Barcelona. Facultat d'Economia i Empresa
Series/Report no: [WP E-IR18/29]
Abstract: Estimation in single-index models for risk assessment is developed. Statistical properties are given and an application to estimate the cost of traffic accidents in an innovative insurance data set that has information on driving style is presented. A new kernel approach for the estimator covariance matrix is provided. Both, the simulation study and the real case show that the method provides the best results when data are highly skewed and when the conditional distribution is of interest. Supplementary materials containing appendices are available online.
Note: Reproducció del document publicat a:
It is part of: IREA – Working Papers, 2018, IR18/29
Appears in Collections:Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))

Files in This Item:
File Description SizeFormat 
IR18-029_Bolance+Cao+Guillen.pdf2.03 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons