Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/127048
Title: Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS
Author: Cacabelos, Daniel
Ramírez Núñez, Omar
Granado Serrano, Ana Belén
Torres, Pascual
Ayala, Victòria
Moiseeva, Victoria
Povedano, Mònica
Ferrer, Isidro (Ferrer Abizanda)
Pamplona, Reinald
Portero Otin, Manuel
Boada, Jordi
Keywords: Malalties neuromusculars
Esclerosi lateral amiotròfica
Factors sexuals en les malalties
Neuromuscular diseases
Amyotrophic lateral sclerosis
Sex factors in disease
Issue Date: 13-Jan-2016
Publisher: BioMed Central
Abstract: Introduction: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A. Results and Conclusions: Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17βestradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS.
Note: Reproducció del document publicat a: https://doi.org/10.1186/s40478-015-0271-6
It is part of: Acta Neuropathologica Communications, 2016, vol. 4, p. 3
URI: http://hdl.handle.net/2445/127048
Related resource: https://doi.org/10.1186/s40478-015-0271-6
ISSN: 2051-5960
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
Articles publicats en revistes (Patologia i Terapèutica Experimental)

Files in This Item:
File Description SizeFormat 
667080.pdf1.62 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons