Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/127660
Title: Introducció a la dinàmica simbòlica. Aplicació al Problema de Sitnikov
Author: Toloba López-Egea, Andrea
Director/Tutor: Fontich, Ernest, 1955-
Keywords: Homeomorfismes
Treballs de fi de grau
Dinàmica topològica
Problema dels tres cossos
Sistemes dinàmics hiperbòlics
Homeomorphisms
Bachelor's thesis
Topological dynamics
Three-body problem
Hyperbolic dynamical systems
Issue Date: 27-Jun-2018
Abstract: [en] This dissertation is divided into two parts. In the first part, we study the shift homeomorphism for a finite or denumerable alphabet set and we give sufficient conditions to conjugate an application in a Cantor subset of the domain with the shift. These conjugations have very important dynamic consequences. In the second part, we apply the results to Sitnikov’s problem. This is a restricted three body problem in which two bodies describe elliptic orbits while the center of mass is at rest. The third body is moving on a line perpendicular to the plane of motion of the first two bodies and going through the center of mass. The goal is to describe the motion of the third mass point which is periodically excited by the first two. This way we get the existence of a wide variety of oscillatory movements for this problem.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: 2018
URI: http://hdl.handle.net/2445/127660
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria425.99 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons