Please use this identifier to cite or link to this item:
Title: Role of correlations in spin-polarized neutron matter
Author: Vidaña, Isaac
Polls Martí, Artur
Durant, Victoria
Keywords: Neutrons
Teoria del funcional de densitat
Density functionals
Issue Date: 28-Nov-2016
Publisher: American Physical Society
Abstract: Background: The possible existence of a phase transition to a ferromagnetic state in neutron matter as origin of the extremely high magnetic fields of neutron stars is still an open issue. Whereas many phenomenological interactions predict this transition at densities accessible in neutron stars, microscopic calculations based on realistic interactions show no indication of it. The existence or non-existence of this transition is a consequence of the different role of nucleon-nucleon correlations in polarized and unpolarized neutron matter. Therefore, to give a definite answer to this issue it is necessary to analyze the behavior of these correlations. Purpose: Using the Hellmann-Feynman theorem we analyze the contribution of the different terms of the nucleon-nucleon interaction to the spin symmetry energy of neutron matter with the purpose of identifying the nature and role of correlations in polarized and unpolarized neutron matter. Methods: The analysis is performed within the microscopic Brueckner-Hartree-Fock approach using the Argonne V18 realistic potential plus the Urbana IX three-body force. Results: Our results show no indication of a ferromagnetic transition as the spin symmetry energy of neutron matter is always an increasing function of density. They show also that the main contribution to it comes from the S = 0 channel, acting only in non-polarized neutron matter, in particular from the S-1(0) and the D-1(2) partial waves. Three-body forces are found to play a secondary role in the determination of the spin symmetry energy. Conclusions: By evaluating the kinetic energy difference between the correlated system and the underlying Fermi sea to estimate the importance of correlations in spin-polarized neutron matter, we conclude that non-polarized neutron matter is more correlated than totally polarized one.
Note: Reproducció del document publicat a:
It is part of: Physical Review C, 2016, vol. 94, num. 5, p. 054006-1-054006-6
Related resource:
ISSN: 2469-9985
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
667658.pdf219.17 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.