Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/128467
Title: CO2 mitigation accounting for Thermal Energy Storage (TES) case studies
Author: Cabeza, Luisa F.
Miró, Laia
Oró, Eduard
Gracia, Alvaro de
Martin, Viktoria
Krönauer, Andreas
Rathgeber, Christoph
Farid, Mohammed M.
Paksoy, Halime O.
Martínez López, Mònica
Fernández Renna, Ana Inés
Keywords: Diòxid de carboni
Emmagatzematge d'energia tèrmica
Canvi climàtic
Carbon dioxide
Heat storage
Climatic change
Issue Date: 23-Jun-2015
Publisher: Elsevier B.V.
Abstract: According to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 ''Surplus heat management using advanced TES for CO2 mitigation'' of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.apenergy.2015.05.121
It is part of: Applied Energy, 2015, vol. 155, p. 365-377
URI: http://hdl.handle.net/2445/128467
Related resource: https://doi.org/10.1016/j.apenergy.2015.05.121
ISSN: 0306-2619
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
653548.pdf1.29 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons