Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/128545
Title: Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013
Author: Galindo Fernández, Daniel
Marcote Martin, Benito
Paredes i Poy, Josep Maria
Paredes Fortuny, Xavier
Ribó Gomis, Marc
Zurita, Adrián
NuSTAR Team
VERITAS Collaboration
MAGIC Collaboration
Keywords: Galàxies
Raigs X
Raigs gamma
Galaxies
X-rays
Gamma rays
Issue Date: 9-Mar-2016
Publisher: Institute of Physics (IOP)
Abstract: We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Mrk 421 taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy (VHE) γ-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 keV range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep ${\rm{\Gamma }}\approx 3$ power law, with no evidence for an exponential cutoff or additional hard components up to ~80 keV. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.
Note: Reproducció del document publicat a: https://doi.org/10.3847/0004-637X/819/2/156
It is part of: Astrophysical Journal, 2016, vol. 819, num. 2
URI: http://hdl.handle.net/2445/128545
Related resource: https://doi.org/10.3847/0004-637X/819/2/156
ISSN: 0004-637X
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
659679.pdf2.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.