Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/130027
Title: Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet
Author: Agnelli, Silvia
Arriarán, Sofía
Oliva Lorenzo, Laia
Remesar Betlloch, Xavier
Fernández López, José Antonio
Alemany, Marià, 1946-
Keywords: Urea
Alimentació
Rates (Animals de laboratori)
Urea
Diet
Rats as laboratory animals
Issue Date: 15-Jun-2016
Publisher: Royal Society of Chemistry
Abstract: High-energy (hyperlipidic) cafeteria diets induce insulin resistance limiting glucose oxidation, and lower amino acid catabolism. Despite high amino-N intake, amino acids are preserved, lowering urea excretion. We analysed how energy partition induced by cafeteria diet affects liver ammonium handling and urea cycle. Female and male rats were fed control or cafeteria diets for 30 days. There was a remarkable constancy on enzyme activities and expressions of urea cycle and ammonium metabolism. The key enzymes controlling urea cycle: carbamoyl-P synthase 1, arginino-succinate synthase and arginase expressions were decreased by diet (albeit more markedly in males), and their activities were correlated with the gene expressions. The effects observed, in ammonium handling enzyme activities and expressions behaved in a way similar to that of the urea cycle, showing a generalized downregulation of liver amino acid catabolism. This process was affected by sex. The different strategies of amino-N handling by females and males further modulated the preservation of 2-amino N under sufficient available energy. The effects of sex were more marked than those of diet were, since different metabolism survival strategies changed substrate partition and fate. The data presented suggest a lower than expected N flow to the liver, which overall importance for amino acid metabolism tends to decrease with both cafeteria diet and female sex. Under standard conditions, liver availability of ammonium was low and controlled. The situation was unchanged (or even lowered) in cafeteria-fed rats, ultimately depending on intestinal amino acid catabolism.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/c5ra25174e
It is part of: RSC Advances, 2016, vol. 6, num. 14, p. 11278-11288
URI: http://hdl.handle.net/2445/130027
Related resource: https://doi.org/10.1039/c5ra25174e
ISSN: 2046-2069
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
666145.pdf233.59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.