Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/13288
Title: Percolation and epidemic thresholds in clustered networks
Author: Serrano Moral, Ma. Ángeles (María Ángeles)
Boguñá, Marián
Keywords: Física estadística
Percolació (Física estadística)
Statistical physics
Percolation (Statistical physics)
Issue Date: 2006
Publisher: American Physical Society
Abstract: We develop a theoretical approach to percolation in random clustered networks. We find that, although clustering in scale-free networks can strongly affect some percolation properties, such as the size and the resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide variety of real scale-free networks which shows a high level of transitivity. Our findings are in good agreement with numerical simulations.
Note: Reproducció digital del document proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevLett.97.088701
It is part of: Physical Review Letters, 2006, vol. 97, núm. 8, p. 088701-1-088701-4
URI: http://hdl.handle.net/2445/13288
ISSN: 0031-9007
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
557921.pdf195.66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.