Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/133204
Title: ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature
Author: Miret, Javier A.
Munné Bosch, Sergi
Dijkwel, Paul P.
Keywords: Àcid abscísic
Collites
Abscisic acid
Harvesting
Issue Date: 1-Feb-2018
Publisher: John Wiley & Sons
Abstract: Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 degrees C) and room temperature (25 degrees C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 degrees C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature.
Note: Reproducció del document publicat a: https://doi.org/10.1111/pbi.12793
It is part of: Plant Biotechnology Journal, 2018, vol. 16, num. 2, p. 530-544
URI: http://hdl.handle.net/2445/133204
Related resource: https://doi.org/10.1111/pbi.12793
ISSN: 1467-7644
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
Articles publicats en revistes (Institut de Recerca de la Biodiversitat (IRBio))

Files in This Item:
File Description SizeFormat 
682950.pdf617.75 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons