Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/138039
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSachau, Till-
dc.contributor.authorBons, Paul D.-
dc.contributor.authorGómez Rivas, Enrique-
dc.date.accessioned2019-07-24T07:48:31Z-
dc.date.available2019-07-24T07:48:31Z-
dc.date.issued2015-08-21-
dc.identifier.issn2296-424X-
dc.identifier.urihttp://hdl.handle.net/2445/138039-
dc.description.abstractIntermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous Darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant "viscous" parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fphy.2015.00063-
dc.relation.ispartofFrontiers in Physics, 2015, vol. 3, num. 63, p. 1-13-
dc.relation.urihttps://doi.org/10.3389/fphy.2015.00063-
dc.rightscc-by (c) Sachau, Till et al., 2015-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)-
dc.subject.classificationFracturació hidràulica-
dc.subject.classificationMecànica de roques-
dc.subject.otherHydraulic fracturing-
dc.subject.otherRock mechanics-
dc.titleTransport efficiency and dynamics of hydraulic fracture networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec678040-
dc.date.updated2019-07-24T07:48:31Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
678040.pdf3.8 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons