Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/138079
Title: Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites
Author: Proenza Fernández, Joaquín Antonio
González Jiménez, José María
García Casco, Antonio
Belousova, Elena
Griffin, William L.
Talavera, Cristina
Rojas Agramonte, Yamirka
Aiglsperger, Thomas Hans
Navarro Ciurana, Dídac
Pujol Solà, Núria
Gervilla Linares, Fernando
O'Reilly, Suzanne Yvette
Jacob, Dorrit E.
Keywords: Zirconi
Geocronologia
Ofiolites
Geologia submarina
Cuba
Zirconium
Geochronology
Ophiolites
Submarine geology
Cuba
Issue Date: Nov-2018
Publisher: Elsevier
Abstract: The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous (99 Ma) to Neoarchean (2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction (SSZ)-type Mayarí-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains (n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negative εHf(t) (−26 to −0.6) and occasional inclusions of quartz, K-feldspar, biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains (297 ± 5 Ma to 2126 ± 27 Ma) show positive εHf(t) (+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile (mantle) sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite. We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.gsf.2017.12.005
It is part of: Geoscience Frontiers, 2018, vol. 9, num. 6, p. 1921-1936
URI: http://hdl.handle.net/2445/138079
Related resource: https://doi.org/10.1016/j.gsf.2017.12.005
ISSN: 1674-9871
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
678414.pdf5.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons