Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/138987
Title: Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices
Author: Malandrino, Andrea
Trepat Guixer, Xavier
Kamm, Roger D.
Mak, Michael
Keywords: Col·lagen
Citologia
Matriu extracel·lular
Collagen
Cytology
Extracellular matrix
Issue Date: 8-Apr-2019
Publisher: Public Library of Science (PLoS)
Abstract: The mechanical properties of the extracellular matrix (ECM)–a complex, 3D, fibrillar scaffold of cells in physiological environments–modulate cell behavior and can drive tissue morphogenesis, regeneration, and disease progression. For simplicity, it is often convenient to assume these properties to be time-invariant. In living systems, however, cells dynamically remodel the ECM and create time-dependent local microenvironments. Here, we show how cell-generated contractile forces produce substantial irreversible changes to the density and architecture of physiologically relevant ECMs–collagen I and fibrin–in a matter of minutes. We measure the 3D deformation profiles of the ECM surrounding cancer and endothelial cells during stages when force generation is active or inactive. We further correlate these ECM measurements to both discrete fiber simulations that incorporate fiber crosslink unbinding kinetics and continuum-scale simulations that account for viscoplastic and damage features. Our findings further confirm that plasticity, as a mechanical law to capture remodeling in these networks, is fundamentally tied to material damage via force-driven unbinding of fiber crosslinks. These results characterize in a multiscale manner the dynamic nature of the mechanical environment of physiologically mimicking cell-in-gel systems.
Note: Reproducció del document publicat a: https://doi.org/10.1371/journal.pcbi.1006684
It is part of: PLOS Computational Biology, 2019, vol. 15, num. 4, p. e1006684
URI: http://hdl.handle.net/2445/138987
Related resource: https://doi.org/10.1371/journal.pcbi.1006684
Appears in Collections:Articles publicats en revistes (Biomedicina)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
L12_2019_PLOS Computational Biology_15_e1006684.pdf3.57 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons