Please use this identifier to cite or link to this item:
Title: El moviment brownià i la seva aplicació al càlcul estocàstic
Author: Pi Jaumà, Irina
Director/Tutor: Márquez, David (Márquez Carreras)
Keywords: Moviment brownià
Treballs de fi de grau
Equacions diferencials estocàstiques
Pertorbació (Matemàtica)
Processos estocàstics
Integrals estocàstiques
Mecànica estadística
Brownian movements
Bachelor's thesis
Stochastic differential equations
Perturbation (Mathematics)
Stochastic processes
Stochastic integrals
Statistical mechanics
Issue Date: 18-Jan-2019
Abstract: [en] The main goal of this work is to rigorously define Brownian motion and understand its relevance when doing mathematical models of different phenomena from the reality. In addition, going from the properties of nowhere differentiability and finite quadratic variation of the sample paths, we illustrate the necessity of a new calculus in order to solve stochastic differential equations (SDE), which model dynamical systems with random perturbations, using the definition of the stochastic (or Itô) integral and its lemma. Finally, we apply the developed Mathematics theory to the problem of the motion of a Brownian particle in suspension in a fluid, being able to correctly describe the velocity distribution that follows the particle and recovering some important Physics’ results.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: David Márquez
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
TFGmates-PiJaumà-Irina.pdfMemòria1.94 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons