Please use this identifier to cite or link to this item:
Title: Machine Learning with the backpropagation algorithm
Author: Espuña Fontcuberta, Aleix
Director/Tutor: Garrido Beltrán, Lluís
Keywords: Aprenentatge automàtic
Xarxes neuronals (Informàtica)
Python (Llenguatge de programació)
Treballs de fi de grau
Machine learning
Neural networks (Computer science)
Python (Computer program language)
Bachelor's thesis
Issue Date: Jun-2019
Abstract: The goal of this project was to develop with Python a classiffer capable to separate two different classes (binary classiffer). To do this, we implemented a neural network that uses gradient descent with the backpropagation algorithm to learn in a supervised training process. We first trained the net and studied its behavior with a binary classification problem that we created, generating our own training examples with the acceptance-rejection algorithm. We realized that the net was returning the conditional probability for each example to belong to one of the classes. After that, we focused on two different real classification problems, both obtained from available online machine learning data sets.
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2019, Tutor: Lluís Garrido Beltrán
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
ESPUÑA FONTCUBERTA Aleix.pdf439.39 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons