Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/141659
Title: Dominant and Complementary Emotion Recognition from Still Images of Faces
Author: Guo, Jianzhu
Lei, Zhen
Wan, Jun
Avots, Egils
Hajarolasvadi, Noushin
Knyazev, Boris
Kuharenko, Artem
Jacques Junior, Julio Cezar Silveira
Baró, Xavier
Demirel, Hasan
Escalera Guerrero, Sergio
Allik, Jüri
Anbarjari, Gholamreza
Keywords: Reconeixement facial (Informàtica)
Expressió facial
Emocions
Human face recognition (Computer science)
Facial expression
Emotions
Issue Date: 30-Apr-2018
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Abstract: Emotion recognition has a key role in affective computing. Recently, fine-grained emotion analysis, such as compound facial expression of emotions, has attracted high interest of researchers working on affective computing. A compound facial emotion includes dominant and complementary emotions (e.g., happily-disgusted and sadly-fearful), which is more detailed than the seven classical facial emotions (e.g., happy, disgust, and so on). Current studies on compound emotions are limited to use data sets with limited number of categories and unbalanced data distributions, with labels obtained automatically by machine learning-based algorithms which could lead to inaccuracies. To address these problems, we released the iCV-MEFED data set, which includes 50 classes of compound emotions and labels assessed by psychologists. The task is challenging due to high similarities of compound facial emotions from different categories. In addition, we have organized a challenge based on the proposed iCV-MEFED data set, held at FG workshop 2017. In this paper, we analyze the top three winner methods and perform further detailed experiments on the proposed data set. Experiments indicate that pairs of compound emotion (e.g., surprisingly-happy vs happily-surprised) are more difficult to be recognized if compared with the seven basic emotions. However, we hope the proposed data set can help to pave the way for further research on compound facial emotion recognition.
Note: Reproducció del document publicat a: https://doi.org/10.1109/ACCESS.2018.2831927
It is part of: IEEE Access, 2018, vol. 6, p. 26391-26403
URI: http://hdl.handle.net/2445/141659
Related resource: https://doi.org/10.1109/ACCESS.2018.2831927
ISSN: 2169-3536
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
680186.pdf8.8 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons