Please use this identifier to cite or link to this item:
Title: Monads on projective varieties
Author: Marchesi, Simone
Marques, Pedro Macías
Soares, Helena
Keywords: Geometria algebraica
Varietats algebraiques
Algebraic geometry
Algebraic varieties
Issue Date: 1-May-2018
Publisher: Mathematical Sciences Publishers (MSP)
Abstract: We generalize Fløystad's theorem on the existence of monads on projectivespace to a larger set of projective varieties. We consider a varietyX, a linebundleLonX, and a basepoint-free linear system of sections ofLgiving amorphism to projective space whose image is either arithmetically Cohen-Macaulay (ACM) or linearly normal and not contained in a quadric. Wegive necessary and sufficient conditions on integersa,bandcfor a monadof type $\mathbf{0} \rightarrow\left(\boldsymbol{L}^{\vee}\right)^{a} \rightarrow \mathcal{O}_{X}^{b} \rightarrow \boldsymbol{L}^{c} \rightarrow \mathbf{0}$ to exist. We show that under certain conditions there exists a monad whosecohomology sheaf is simple. We furthermore characterize low-rank vectorbundles that are the cohomology sheaf of some monad as above.Finally, we obtain an irreducible family of monads over projective spaceand make a description on how the same method could be used on an ACMsmooth projective varietyX. We establish the existence of a coarse modulispace of low-rank vector bundles over an odd-dimensionalXand show thatin one case this moduli space is irreducible.
Note: Reproducció del document publicat a:
It is part of: Pacific Journal of Mathematics, 2018, vol. 296, num. 1, p. 155-180
Related resource:
ISSN: 0030-8730
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
692160.pdf400.08 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.