Please use this identifier to cite or link to this item:
Title: Ensuring the overall combustion of herbicide metribuzin by electrochemical advanced oxidation processes. Study of operation variables, kinetics and degradation routes
Author: Guelfi, Diego R.V.
Ye, Zhihong
Gozzi, Fábio
De Oliveira, Silvio C.
Machulek Jr., Amílcar
Brillas, Enric
Sirés Sadornil, Ignacio
Keywords: Oxidació electroquímica
Depuració d'aigües residuals
Electrolytic oxidation
Purification of sewage
Issue Date: 16-Oct-2018
Publisher: Elsevier B.V.
Abstract: This article reports the electrochemical degradation of the herbicide metribuzin (MTZ) in sulfate medium by advanced oxidation processes like anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF). A boron-doped diamond (BDD) anode was combined with an air-diffusion cathode with ability to produce H2O2. Unprecedented overall combustion was feasible by all methods at a constant current density (j) ≥100.0 mA cm−2. The total organic carbon (TOC) removal achieved by AO-H2O2 was independent from pH within the range 3.0-9.0, whereas the oscillatory dependence of the pseudo-first-order MTZ decay rate constant with this variable was ascribed to adsorption on the BDD surface. In EF and PEF at pH 3.0, 0.50 mM Fe2+ was determined as optimum catalyst content and the MTZ removal showed two consecutive pseudo-first-order kinetic stages. These were related to the fast reaction of the target molecule with OH formed from Fenton's reaction, followed by a slower attack of physisorbed BDD(OH) onto Fe(III)-MTZ complexes. The effect of j and MTZ content on decay kinetics and TOC removal was examined. PEF was the best treatment due to the decomposition of photoactive intermediates by UVA radiation, yielding total mineralization of a 0.523 mM herbicide solution after 420 min of electrolysis at 100.0 mA cm−2. A thorough reaction pathway for MTZ degradation is proposed from the sixteen heteroaromatic by-products and three aliphatic molecules identified by GC-MS and LC-MS/MS. Oxalic and oxamic acids were detected as final carboxylic acids by ion-exclusion HPLC.
Note: Versió postprint del document publicat a:
It is part of: Separation and Purification Technology, 2018, vol. 211, p. 637-645
Related resource:
ISSN: 1383-5866
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
682663.pdf476.89 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons