Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/147783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCandotti, Michela-
dc.contributor.authorPérez, Alberto-
dc.contributor.authorFerrer Costa, Carles-
dc.contributor.authorRueda Borrego, Manuel-
dc.contributor.authorMeyer, Tim-
dc.contributor.authorGelpí Buchaca, Josep Lluís-
dc.contributor.authorOrozco López, Modesto-
dc.date.accessioned2020-01-14T15:04:04Z-
dc.date.available2020-01-14T15:04:04Z-
dc.date.issued2013-12-12-
dc.identifier.issn1553-734X-
dc.identifier.urihttp://hdl.handle.net/2445/147783-
dc.description.abstractAfter decades of using urea as denaturant, the kinetic role of this molecule in the unfolding process is still undefined: does urea actively induce protein unfolding or passively stabilize the unfolded state? By analyzing a set of 30 proteins (representative of all native folds) through extensive molecular dynamics simulations in denaturant (using a range of force-fields), we derived robust rules for urea unfolding that are valid at the proteome level. Irrespective of the protein fold, presence or absence of disulphide bridges, and secondary structure composition, urea concentrates in the first solvation shell of quasi-native proteins, but with a density lower than that of the fully unfolded state. The presence of urea does not alter the spontaneous vibration pattern of proteins. In fact, it reduces the magnitude of such vibrations, leading to a counterintuitive slow down of the atomic-motions that opposes unfolding. Urea stickiness and slow diffusion is, however, crucial for unfolding. Long residence urea molecules placed around the hydrophobic core are crucial to stabilize partially open structures generated by thermal fluctuations. Our simulations indicate that although urea does not favor the formation of partially open microstates, it is not a mere spectator of unfolding that simply displaces to the right of the folded←→unfolded equilibrium. On the contrary, urea actively favors unfolding: it selects and stabilizes partially unfolded microstates, slowly driving the protein conformational ensemble far from the native one and also from the conformations sampled during thermal unfolding.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pcbi.1003393-
dc.relation.ispartofPLoS Computational Biology, 2013, vol. 9, num. 12, p. e1003393-
dc.relation.urihttps://doi.org/10.1371/journal.pcbi.1003393-
dc.rightscc-by (c) Candotti, Michela et al., 2013-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationDesnaturalització de proteïnes-
dc.subject.classificationUrea-
dc.subject.otherProtein denaturation-
dc.subject.otherUrea-
dc.titleExploring the early stages of chemical unfolding of proteins at the proteome scale-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec629354-
dc.date.updated2020-01-14T15:04:04Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/291433/EU//SIMDNA-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid24348236-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
629354.pdf2.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons