Please use this identifier to cite or link to this item:
Title: Arithmetic Judgements, First-Person Judgements and Immunity to Error Through Misidentification
Author: Palmira, Michele
Keywords: Judici oral
Immunitat penal
Oral pleading
Penal immunity
Issue Date: 9-Apr-2018
Publisher: Springer Nature
Abstract: The paper explores the idea that some singular judgements about the natural numbers are immune to error through misidentification by pursuing a comparison between arithmetic judgements and first-person judgements. By doing so, the first part of the paper offers a conciliatory resolution of the Coliva-Pryor dispute about so-called "de re" and "which-object" misidentification. The second part of the paper draws some lessons about what it takes to explain immunity to error through misidentification. The lessons are: First, the so-called Simple Account (see Wright 2012) of whichobject immunity to error through misidentification to the effect that a judgement is immune to this kind of error just in case its grounds do not feature any identification component fails. Secondly, wh-immunity can be explained by a Reference-Fixing Account to the effect that a judgement is immune to this kind of error just in case its grounds are constituted by the facts whereby the reference of the concept of the object which the judgement concerns is fixed. Thirdly, a suitable revision of the Simple Account explains the de re immunity of those arithmetic judgements which are not 2 wh-immune. These three lessons point towards the general conclusion that there is no unifying explanation of de re and wh-immunity
Note: Versió postprint del document publicat a:
It is part of: Review of Philosophy and Psychology, 2018, vol. 10, num. 1, p. 155-172
Related resource:
ISSN: 1878-5158
Appears in Collections:Articles publicats en revistes (Filosofia)

Files in This Item:
File Description SizeFormat 
686363.pdf183.75 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.