Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/149512
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÁlvarez Zaldiernas, Cristina-
dc.contributor.authorLu, Jun-
dc.contributor.authorZheng, Yujuan-
dc.contributor.authorBlasi Cabús, Joan-
dc.contributor.authorSolsona Sancho, Carles-
dc.contributor.authorHolmgren, Arne-
dc.date.accessioned2020-02-06T12:27:03Z-
dc.date.available2020-02-06T12:27:03Z-
dc.date.issued2016-08-12-
dc.identifier.issn0021-9258-
dc.identifier.urihttp://hdl.handle.net/2445/149512-
dc.description.abstractProtein misfolding is implicated in neurodegenerative diseases such as ALS, where mutations of superoxide dismutase 1 (SOD1) account for about 20% of the inherited mutations. Human SOD1 (hSOD1) contains four cysteines, including Cys(57) and Cys(146), which have been linked to protein stability and folding via forming a disulfide bond, and Cys(6) and Cys(111) as free thiols. But the roles of the cellular oxidation-reduction (redox) environment in SOD1 folding and aggregation are not well understood. Here we explore the effects of cellular redox systems on the aggregation of hSOD1 proteins. We found that the known hSOD1 mutations G93A and A4V increased the capability of the thioredoxin and glutaredoxin systems to reduce hSOD1 compared with wild-type hSOD1. Treatment with inhibitors of these redox systems resulted in an increase of hSOD1 aggregates in the cytoplasm of cells transfected with mutants but not in cells transfected with wild-type hSOD1 or those containing a secondary C111G mutation. This aggregation may be coupled to changes in the redox state of the G93A and A4V mutants upon mild oxidative stress. These results strongly suggest that the thioredoxin and glutaredoxin systems are the key regulators for hSOD1 aggregation and may play critical roles in the pathogenesis of ALS.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Society for Biochemistry and Molecular Biology-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1074/jbc.M115.708230-
dc.relation.ispartofJournal of Biological Chemistry, 2016, vol. 291, num. 33, p. 17197-17208-
dc.relation.urihttps://doi.org/10.1074/jbc.M115.708230-
dc.rights(c) American Society for Biochemistry and Molecular Biology, 2016-
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)-
dc.subject.classificationEstrès oxidatiu-
dc.subject.classificationMalalties neurodegeneratives-
dc.subject.classificationEsclerosi lateral amiotròfica-
dc.subject.otherOxidative stress-
dc.subject.otherNeurodegenerative Diseases-
dc.subject.otherAmyotrophic lateral sclerosis-
dc.titleCellular redox systems impact the aggregation of CU,Zn Superoxide Dismutase linked to familial Amyotrophic Lateral Sclerosis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec672648-
dc.date.updated2020-02-06T12:27:03Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid27261461-
Appears in Collections:Articles publicats en revistes (Patologia i Terapèutica Experimental)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
672648.pdf3.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.