Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/149758
Title: Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer
Author: Calero Borrallo, Carles
García-Torres, J.
Ortiz-Ambriz, Antonio
Sagués i Mestre, Francesc
Pagonabarraga Mora, Ignacio
Tierno, Pietro
Keywords: Camps magnètics
Nanotecnologia
Magnetic fields
Nanotechnology
Issue Date: 27-Oct-2019
Publisher: Royal Society of Chemistry
Abstract: The realization of artificial microscopic swimmers able to propel in viscous fluids is an emergent research field of fundamental interest and vast technological applications. For certain functionalities, the efficiency of the microswimmer in converting the input power provided through an external actuation into propulsive power output can be critical. Here we use a microswimmer composed by a self-assembled ferromagnetic rod and a paramagnetic sphere and directly determine its swimming efficiency when it is actuated by a swinging magnetic field. Using fast video recording and numerical simulations we fully characterize the dynamics of the propeller and identify the two independent degrees of freedom which allow its propulsion. We then obtain experimentally the Lighthill's energetic efficiency of the swimmer by measuring the power consumed during propulsion and the energy required to translate the propeller at the same speed. Finally, we discuss how the efficiency of our microswimmer could be increased upon suitable tuning of the different experimental parameters.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/C9NR05825G
It is part of: Nanoscale, 2019, vol. 11, num. 40, p. 18723-18729
URI: http://hdl.handle.net/2445/149758
Related resource: https://doi.org/10.1039/C9NR05825G
ISSN: 2040-3364
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
692232.pdf3.4 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 27-10-2020


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.