Please use this identifier to cite or link to this item:
Title: Biology of the cardiovascular Kv7.1 functional complex
Author: Serrano Novillo, Clara
Director/Tutor: Felipe Campo, Antonio
Keywords: Canals de potassi
Malalties cardiovasculars
Potassium channels
Cardiovascular diseases
Issue Date: 17-Jan-2020
Publisher: Universitat de Barcelona
Abstract: [eng] Voltage gated K+ channels (Kv) are transmembrane proteins that allow the pass-thorugh of potassium ions, regulating the electrochemical gradient of the cell membrane. This way, they modulate several physiological processes, such as proliferation, migration or cell volume. Of particular interest in this dissertation is their role in excitable cells, were they control several key functions. The relevance of this ion channels is evidenced when mutations or alterations in the proper functioning of Kv channels causes severe pathologies, including cardiovascular or neuronal diseases, autoimmune affectations or cancer. Kv channels are tetramers of 4 α subunits with 6 transmembrane segments each one, that associate to form the pore and generate a functional channel. The wide functional diversity of currents is due to a vast number of modulations: heterotetramerization of α subunits, splicing variants, post-translational modifications or the association with regulatory subunits. The last ones include KCNE family, which co-assemble with the channel and modulate its electrophysiological, pharmacological or physiological properties. Kv7.1 associates with KCNE1 in cardiomyocytes to generate IKs cardiac repolarizing currents, in charge of finishing the cardiac action potential. Their assembly and traffic to the plasma membrane have been subject of discussion over the last years, with two opposite schools claiming an association early in the biogenesis versus a independent traffic to the plasma membrane, were both proteins would diffuse to assemble. We aimed in the present work to shed a light to this controversial topic. Kv channels have also been described in vascular smooth muscle, were they set the resting membrane potential and, therefore, control vascular tone. Kv7.1, Kv7.4 and Kv7.5 have been detected in different veins and arteries, were aberrations in their expression promote physiological alterations, but the specific role of each subunit remains unknown. In this scenario, the proposed objectives for the current PhD dissertation included the study of Kv7.1-KCNE1 complex, its assembly and traffic mechanisms. We hypothesized an unconventional secretion for the complex and suggest ER-PM junctions as the potential trafficking system. Therefore, we aim to characterize this structures and their implication in Kv7.1 membrane targeting. Finally, due to its implication in proliferation, their importance in cardiovascular system and their known role in some cancers, we studied the changes in the expression of Kv channels in endothelial-derived vascular tumors. We have been able to solve the traffic controversy of Kv7.1-KCNE1 complexes as they are not assembled early in their biogenesis. While KCNE1 is using the conventional secretion pathway, Kv7.1 takes an unconventional route that skips Golgi. Upon co-assembly, Kv7.1 redirects KCNE1 to this unconventional pathway. Moreover, we have proved that this non-conventional route are indeed ER-PM junctions, which also host the assembly of the complex. The molecular interactors of the channel during its ER-PM junction targeting have also been analysed during this PhD thesis, unravelling a complex and dynamic proteomic context. In addition, we have described for the first time the expression of Kv1.3, Kv1.5, Kv7.1 and Kv7.5 in endothelial cells of human veins and arteries. A remodelling of this composition is observed in different vascular cancers, related with the malignancy of the tumor in some of the cases.
[cat] ls canals de potassi dependents (Kv) regulen processos fisiològics molt importants, com la proliferació, la migració o el volum cel·lular. La seva rellevància es posa de manifest amb les diferents patologies associades a alteracions en la expressió dels canals, incloent malalties cardiovasculars, cerebrals, autoimmunes o càncer. Es tracta de proteïnes transmembrana formades per l’associació de 4 subunitats α que s’uneixen per formar el por. La gran varietat de diversitat funcional és deguda a la capacitat de heterotetramerització dels canals, variants d’splicing, modificacions post-traduccionals o la associació a subunitats reguladores KCNE, entre d’altres. En cardiomiòcits, Kv7.1 s’associa a KCNE1 per generar les corrents IKs, encarregades de la repolarització del potencial cardíac. La seva associació i tràfic són tema de debat des de fa anys, amb dues escoles defensant idees oposades. La primera, que les dues proteïnes s’associen en les fases inicials de la biogènesi; la segona, que trafiquen independent cap a la membrana, on difondran per trobar-se. Els Kv també s’han detectat a musculatura vascular llisa, on mantenen el potencial de repòs i controlen així el to vascular. Kv7.1, Kv7.4 i Kv7.5 es troben en diferents venes i arteries, on una expressió aberrant provoca alteracions fisiològiques. Tot i així, el seu paper concret encara es desconeix. En la present tesi doctoral hem comprovat que Kv7.1 i KCNE1 utilitzen vies diferents per arribar a la membrana plasmàtica. KCNE1 viatja per la via convencional, mentre que Kv7.1 utilitza una ruta no convencional que escapa del Golgi. Quan co-expressats, Kv7.1 redirigeix KCNE1 cap aquesta via alternativa. Hem demostrat que aquesta via són les ER-PM junctions, que també són el compartiment on la seva associació té lloc. Els interactors moleculars del canal durant el seu tràfic cap a ER-PM junctions també s’ha estudiat durant aquest treball. A més a més, hem descrit per primer cop l’expressió de Kv1.3, Kv1.5, Kv7.1 i Kv7.5 en l’endoteli de venes i artèries humanes. Hem vist un remodelatge en aquesta expressió en diferents càncers vasculars, en alguns casos relacionat amb la malignitat del tumor.
Appears in Collections:Tesis Doctorals - Departament - Bioquímica i Biomedicina Molecular

Files in This Item:
File Description SizeFormat 
CSN_PhD_THESIS.pdf6.74 MBAdobe PDFView/Open

Embargat   Document embargat fins el 17-1-2022

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.