Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/150877
Title: An Algebraic Study of Admissible Rules
Author: Mastrokostas, Zafeiris
Director/Tutor: Jansana, Ramon
Keywords: Lògica
Lògica algebraica
Àlgebra abstracta
Tesis de màster
Logic
Algebraic logic
Abstract algebra
Master's theses
Issue Date: Feb-2020
Abstract: In this thesis we shall study admissible rules within the general framework of Abstract Algebraic Logic (AAL). Following Lorenzen, we say that a rule is admissible for a logic S whenever it does not add new theorems to S. Despite the seemingly natural definition, the determination of admissible rules in particular logics is usually a difficult problem and requires a deep understanding of the structural properties of the logic. Our purpose is not to study particular cases but instead, we intent to present algebraic conditions of the admissibility of a rule for a logic both in the general case and also depending on its classification in the Leibniz hierarchy. Particular cases will be presented as examples or counter-examples, whenever it is necessary.
Note: Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona, Curs: 2018-2019, Tutor: Ramon Jansana
URI: http://hdl.handle.net/2445/150877
Appears in Collections:Màster Oficial - Pure and Applied Logic / Lògica Pura i aplicada

Files in This Item:
File Description SizeFormat 
TFM_Zafeiris Mastrokostas.pdf823.36 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons