Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/15162
Title: Reexposure and advection of C-14-depleted organic carbon from old deposits at the upper continental slope
Author: Tesi, Tomaseo
Goñi, Miguel A.
Langone, Leonardo
Puig, Pere
Canals Artigas, Miquel
Nittrouer, Charles A.
Madron, Xavier Durrieu de
Calafat Frau, Antoni
Palanques Monteys, Albert
Heussner, Serge
Davies, Maureen H.
Drexler, Tina M.
Fabrés Francés, Joan
Miserocchi, Stefano
Keywords: Ciències ambientals
Ciències de la terra
Marges continentals
Environmental sciences
Earth sciences
Continental margins
Issue Date: 13-Oct-2010
Publisher: American Geophysical Union
Abstract: Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and Pb-210 activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon (Delta C-14 = -944.5 +/- 24.7%; mean age 23,650 +/- 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 +/- 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Delta C-14 = -704.4 +/- 62.5%) relative to inner shelf (Delta C-14 = -293.4 +/- 134.0%), mid-shelf (Delta C-14 = -366.6 +/- 51.1%), and outer shelf (Delta C-14 = -384 +/- 47.8%) surface sediments. Therefore, although the major source of particulate material during the cascading season is resuspended shelf deposits, there is evidence that this aged pool of organic carbon can be eroded and laterally advected downslope.
Note: Reproducció del document publicat a http://dx.doi.org/10.1029/2009GB003745
It is part of: Global Biochemical Cycles, 2010, vol. 24, GB4002, 11 p.
Related resource: http://dx.doi.org/10.1029/2009GB003745
URI: http://hdl.handle.net/2445/15162
ISSN: 0886-6236
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
581988.pdf1.3 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.