Please use this identifier to cite or link to this item:
Title: Some results on approximate continuous selections, fixed points and minimax inequalities
Author: Marchi, Ezio
Martínez Legaz, Juan Enrique
Keywords: Teoria de la forma (Topologia)
Desigualtats (Matemàtica)
Teoria de jocs
Funcions de variables complexes
Universitat de Barcelona. Institut de Matemàtica
Issue Date: 1989
Publisher: Universitat de Barcelona
Series/Report no: Mathematics Preprint Series; 61
Abstract: We introduce the class of multi-valued D-mappings from a non-empty compact subset K of a locally convex Hausdorff topological vector space into a vector space (which, for K convex, includes the class of convex mappings) and we prove that they have a special approximate continuous selection property, from which an approximate fixed point theorem is derived. These results are applied, in particular, to Darboux continuous functions defined on a closed real interval. Furthermore, we extend sorne game theoretic statements concerning continuous decision rules to the case when the strategies of one player are constrained by those of the other and we obtain sorne results related to Ky Fan's inequality involving severa! functions.
Note: Preprint enviat per a la seva publicació en una revista científica.
Note: Reproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 32.1]
Appears in Collections:Preprints de Matemàtiques - Mathematics Preprint Series

Files in This Item:
File Description SizeFormat 
MPS_N061.pdf719.3 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.