Please use this identifier to cite or link to this item:
Title: Generalization of browder's fixed point theorem and its applications
Author: Marchi, Ezio
Martínez Legaz, Juan Enrique
Keywords: Desigualtats (Matemàtica)
Geometria convexa
Teoria del punt fix
Jocs no cooperatius (Matemàtica)
Universitat de Barcelona. Institut de Matemàtica
Issue Date: 1989
Publisher: Universitat de Barcelona
Series/Report no: Mathematics Preprint Series; 71
Abstract: From an infinite dimensional version of a generalization, dueto Peleg, of the Knaster-Kuratowski-Mazurkiewicz's theorem, we obtain a generalization of Browder's fixed point theorem, for multi-valued mappings from the product of a finite family of non-empty compact convex sets ( each in a Hausdorff topological vector space) into each of its factors. By applying this thorem, we deduce sorne Ky Fan type inequalities, from one of which a generalization of the Ky Fan's intersection theorem on sets with convex sections is obtained.
Note: Preprint enviat per a la seva publicació en una revista científica: Topol. Methods Nonlinear Anal. Volume 2, Number 2 (1993), 277-291. [].
Note: Reproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 32.12]
Appears in Collections:Preprints de Matemàtiques - Mathematics Preprint Series

Files in This Item:
File Description SizeFormat 
MPS_N071.pdf502.13 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.