Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuapp, Wolfgang-
dc.contributor.authorBofill i Villà, Josep M.-
dc.description.abstractWe study a Frenkel{Kontorova (FK) model of a nite chain with free-end boundary conditions. The model has two competing potentials. Newton trajectories are an ideal tool to understand the circumstances under a driving of an FK chain by external forces. To reach the insights we calculate some stationary structures for a chain with 23 particles. We search the lowest energy saddle points for a complete minimum energy path of the chain for a movement over the full period of the on-site potential, a sliding. If an additional tilting is set, then one is interested in barrier breakdown points (BBPs) on the potential energy surface for a critical tilting force named the static frictional force. In symmetric cases, such BBPs are often valley-ridge in ection points of the potential energy surface. We explain the theory and demonstrate it with an example. We propose a model for a DC drive, as well as an AC drive, of the chain using special directional vectors of the external force.-
dc.format.extent15 p.-
dc.publisherSpringer Verlag-
dc.relation.isformatofVersió postprint del document publicat a:
dc.relation.ispartofEuropean Physical Journal B, 2019, vol. 92, num. 95-
dc.rights(c) Springer Verlag, 2019-
dc.subject.classificationTeories no lineals-
dc.subject.classificationMatèria condensada-
dc.subject.classificationQuímica física-
dc.subject.otherNonlinear theories-
dc.subject.otherCondensed matter-
dc.subject.otherPhysical and theoretical chemistry-
dc.titleA model for a driven Frenkel-Kontorova chain-
Appears in Collections:Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))
Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
693314.pdf3.47 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.