Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/15283
Title: Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia
Author: Selivanov, Vitaly A.
Votyakova, Tatyana V.
Zeak, Jennifer A.
Trucco, Massimo
Roca Elias, Josep
Cascante i Serratosa, Marta
Keywords: Respiració
Mitocondris
Anoxèmia
Mitochondrial respiration
Anoxia
Issue Date: 24-Dec-2009
Publisher: PLoS
Abstract: Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1371/journal.pcbi.1000619
It is part of: PLoS Computational Biology, 2009, 5(12): e1000619
URI: http://hdl.handle.net/2445/15283
ISSN: 1553-7358
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
576851.pdf576.76 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons