Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/155668
Title: C-13- and N-15-Isotope Analysis of Desphenylchloridazon by Liquid Chromatography-Isotope-Ratio Mass Spectrometry and Derivatization Gas Chromatography-Isotope-Ratio Mass Spectrometry
Author: Melsbach, A.
Ponsin, V.
Torrentó Aguerri, Clara
Lihl, C.
Hofstetter, T.B.
Hunkeler, D.
Elsner, M.
Keywords: Degradació dels sòls
Geoquímica
Geologia isotòpica
Soil degradation
Geochemistry
Isotope geology
Issue Date: 5-Mar-2019
Publisher: American Chemical Society
Abstract: The widespread application of herbicides impacts surface water and groundwater. Metabolites (e.g., desphenylchloridazon from chloridazon) may be persistent and even more polar than the parent herbicide, which increases the risk of groundwater contamination. When parent herbicides are still applied, metabolites are constantly formed and may also be degraded. Evaluating their degradation on the basis of concentration measurements is, therefore, difficult. This study presents compound-specific stable-isotope analysis (CSIA) of nitrogen- and carbon-isotope ratios at natural abundances as an alternative analytical approach to track the origin, formation, and degradation of desphenylchloridazon (DPC), the major degradation product of the herbicide chloridazon. Methods were developed and validated for carbon- and nitrogen-isotope analysis (δ13C and δ15N) of DPC by liquid chromatography-isotope-ratio mass spectrometry (LC-IRMS) and derivatization gas chromatography-IRMS (GC-IRMS), respectively. Injecting standards directly onto an Atlantis LC-column resulted in reproducible δ13C-isotope analysis (standard deviation <0.5 ) by LC-IRMS with a limit of precise analysis of 996 ng of DPC on-column. Accurate and reproducible δ15N analysis with a standard deviation of <0.4 was achieved by GC-IRMS after derivatization of >100 ng of DPC with 160-fold excess of (trimethylsilyl)diazomethane. Application of the method to environmental-seepage water indicated that newly formed DPC could be distinguished from "old" DPC by the different isotopic signatures of the two DPC sources.
Note: Versió postprint del document publicat a: https://doi.org/10.1021/acs.analchem.8b04906
It is part of: Analytical Chemistry, 2019, vol. 91, num. 5, p. 3412-3420
URI: http://hdl.handle.net/2445/155668
Related resource: https://doi.org/10.1021/acs.analchem.8b04906
ISSN: 0003-2700
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
690198.pdf634.66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.