Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/156757
Title: Neuromuscular activity induces paracrine signaling and triggers axonal regrowth after injury in microfluidic lab‐on‐chip devices
Author: Sala‐Jarque, Julia
Mesquida‐Veny, Francina
Badiola Mateos, Maider
Samitier i Martí, Josep
Hervera Abad, Arnau
Río Fernández, José Antonio del
Keywords: Neurociències
Axons
Neurosciences
Axons
Issue Date: 27-Jan-2020
Publisher: MDPI
Abstract: Peripheral nerve injuries, including motor neuron axonal injury, often lead to functional impairments. Current therapies are mostly limited to surgical intervention after lesion, yet these interventions have limited success in restoring functionality. Current activity‐based therapies after axonal injuries are based on trial‐error approaches in which the details of the underlying cellular and molecular processes are largely unknown. Here we show the effects of the modulation of both neuronal and muscular activity with optogenetic approaches to assess the regenerative capacity of cultured motor neuron (MN) after lesion in a compartmentalized microfluidic‐assisted axotomy device. With increased neuronal activity, we observed an increase in the ratio of regrowing axons after injury in our peripheral‐injury model. Moreover, increasing muscular activity induces the liberation of leukemia inhibitory factor and glial cell line‐derived neurotrophic factor in a paracrine fashion that in turn triggers axonal regrowth of lesioned MN in our 3D hydrogel cultures. The relevance of our findings as well as the novel approaches used in this study could be useful not only after axotomy events but also in diseases affecting MN survival.
Note: Reproducció del document publicat a: https://doi.org/10.3390/cells9020302
It is part of: Cells, 2020, vol. 9, num. 2, p. 302
URI: http://hdl.handle.net/2445/156757
Related resource: https://doi.org/10.3390/cells9020302
ISSN: 2073-4409
Appears in Collections:Articles publicats en revistes (Biologia Cel·lular, Fisiologia i Immunologia)

Files in This Item:
File Description SizeFormat 
695327.pdf3.6 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons