Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/157701
Title: Synthesis, structure, spectroscopy and reactivity of new heterotrinuclear water oxidation catalysts
Author: Mognon, Lorenzo
Mandal, Sukanta
Castillo, Carmen E.
Fortage, Jerome
Molton, Florian
Aromí Bedmar, Guillem
Benet-Buchhlolz, Jordi
Collomb, Marie-Noëlle
Llobet, Antoni
Keywords: Electroquímica
Fotoquímica
Espectroscòpia
Electrochemistry
Photochemistry
Spectrum analysis
Issue Date: 1-Feb-2016
Publisher: Royal Society of Chemistry
Abstract: Four heterotrinuclear complexes containing the ligands 3,5-bis(2-pyridyl)pyrazolate (bpp ) and 2,20:60,20 0- terpyridine (trpy) of the general formula {[RuII(trpy)]2(m-[M(X)2(bpp)2])}(PF6)2, where M ¼ CoII, MnII and X ¼ Cl , AcO (M ¼ CoII, X ¼ Cl : Ru2Co-Cl2; M ¼ MnII, X ¼ Cl : Ru2Mn-Cl2; M ¼ CoII, X ¼ AcO : Ru2Co- OAc2; M ¼ MnII, X ¼ AcO : Ru2Mn-OAc2), have been prepared for the first time. The complexes have been characterized using different spectroscopic techniques such as UV-vis, IR, and mass spectrometry. X-Ray diffraction analyses have been used to characterize the Ru2Mn-Cl2 and Ru2Mn-OAc2 complexes. The cyclic voltammograms (CV) for all four complexes in organic solvent (CH3CN or CH2Cl2) display three successive reversible oxidative waves corresponding to one-electron oxidations of each of the three metal centers. The oxidized forms of the complexes Ru2Co-OAc2 and Ru2Mn-OAc2 are further characterized by EPR and UV-vis spectroscopy. The magnetic susceptibility measurements of all complexes in the temperature range of 2-300 K reveal paramagnetic properties due to the presence of high spin Co(II) and Mn(II) centers. The complexes Ru2Co-OAc2 and Ru2Mn-OAc2 act as precatalysts for the water oxidation reaction, since the acetato groups are easily replaced by water at pH ¼ 7 generating the active catalysts, {[Ru(H2O)(trpy)]2(m-[M(H2O)2(bpp)2])}4+ (M ¼ CoII: Ru2Co-(H2O)4; M ¼ MnII: Ru2Mn- (H2O)4). The photochemical water oxidation reaction is studied using [Ru(bpy)3]2+ as the photosensitizer and Na2S2O8 as a sacrificial electron acceptor at pH ¼ 7. The Co containing complex generates a TON of 50 in about 10 minutes (TOFi ¼ 0.21 s 1), whereas the Mn containing complex only generates a TON of 8. The water oxidation reaction of Ru2Co-(H2O)4 is further investigated using oxone as a sacrificial chemical oxidant at pH ¼ 7. Labelled water oxidation experiments suggest that a nucleophilic attack mechanism is occurring at the Co site of the trinuclear complex with cooperative involvement of the two Ru sites, via electronic coupling through the bpp bridging ligand and via neighboring hydrogen bonding.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/c5sc04672f
It is part of: Chemical Science, 2016, vol. 7, p. 3304-3312
URI: http://hdl.handle.net/2445/157701
Related resource: https://doi.org/10.1039/c5sc04672f
ISSN: 2041-6520
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
660733.pdf1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons