Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/157820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartinez-Outschoorn, Ubaldo E.-
dc.contributor.authorBartrons, Mireia-
dc.contributor.authorBartrons Bach, Ramon-
dc.date.accessioned2020-04-28T09:07:10Z-
dc.date.available2020-04-28T09:07:10Z-
dc.date.issued2019-08-20-
dc.identifier.issn2234-943X-
dc.identifier.urihttp://hdl.handle.net/2445/157820-
dc.description.abstractOncology research pioneers such as Stephen Paget focused on how cancer cells favor particular environments and Judah Folkman on how nutrients are provided to these harsh environments. The tumors consist of a heterogeneous population of cancer cells and a stroma with different cell types that define a specific microenvironment and form a tumoral ecosystem. The evolution of the tumors depends on the interactions of the cancer cells with their tumor microenvironment (TME), determining the progression, eradication, or tumor metastasis. A coral ecosystem is similar to tumors in that it is highly complex and energetically productive. A tropical reef-building coral holobiont is composed of the coral metazoan host (the polyp), its endosymbiotic photosynthetic dinoflagellates (Symbiodiniaceae) and other microorganisms, including protozoans, fungi, bacteria, and archaea. Despite their complexity and very high productivity, corals commonly thrive in nutrient-poor environments, which are similar to what is observed in tumors. The contradiction of high coral productivity and limited nutrient availability has been named as the 'Darwin Paradox,' in reference to its first discoverer. This paradox can be explained by the high uptake and efficient recycling of nutrients by coral reef organisms. A similar paradox has been observed in tumors since it is unclear how this complex ecosystem thrives in such nutrient deprived conditions.-
dc.format.extent5 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fonc.2019.00718-
dc.relation.ispartofFrontiers In Oncology, 2019, vol. 9, p. 718-5-
dc.relation.urihttps://doi.org/10.3389/fonc.2019.00718-
dc.rightscc-by (c) Martinez-Outschoorn, Ubaldo E. et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)-
dc.subject.classificationCàncer-
dc.subject.classificationFactors de creixement-
dc.subject.classificationNanotubs-
dc.subject.classificationFructosa-
dc.subject.otherCancer-
dc.subject.otherGrowth factors-
dc.subject.otherNanotubes-
dc.subject.otherFructose-
dc.titleEditorial: cancer ecosystems-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec698209-
dc.date.updated2020-04-28T09:07:10Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid31482062-
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
698209.pdf180.21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons