Please use this identifier to cite or link to this item:
Title: Fluctuation in the zero set of the parabolic gausian analytic function
Author: Arraz Almirall, Alexis
Director/Tutor: Massaneda Clares, Francesc Xavier
Keywords: Funcions de variables complexes
Teoria geomètrica de funcions
Tesis de màster
Grans desviacions
Processos puntuals
Functions of complex variables
Geometric function theory
Masters theses
Large deviations
Point processes
Issue Date: 27-Jun-2019
Abstract: In this project we study the fluctuation of the zero set process of the parabolic Gaussian analytic function, denoted $\mathbb{S}^{2}$ -GAF and where $\mathbb{S}^{2}$ is the Riemann sphere. There exist several ways to measure such fluctuations. One of them is to compute the variance of certain variables counting the number of points of the process inside a given region. Some asymptotics of such variables will lead us to conclude that the $\mathbb{S}^{2}-$ GAF process is more rigid than the Poisson process on $\mathbb{S}^{2}$ having, in mean, the same number of points as the $\mathbb{S}^{2}$ -GAF process. Also, we will see that the $\mathbb{S}^{2}$ -GAF process tends, as the intensity goes to infinity, to the planar GAF. Another point of view to study the fluctuations of the $\mathbb{S}^{2}$ -GAF is the so-called large deviations, i.e., to measure how certain linear statistics deviate from its average by a fraction of its same average. The latter allows us to estimate the hole probability, i.e., the probability that the point process does not meet a given disk.
Note: Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Director: Francesc Xavier Massaneda Clares
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
158897.pdfMemòria563.07 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons