Please use this identifier to cite or link to this item:
Title: Bioactivity-oriented de novo design of small molecules by conditional variational autoencoders
Author: Castrelo Cid, Alex
Director/Tutor: Vitrià i Marca, Jordi
Keywords: Molècules
Aprenentatge automàtic
Treballs de fi de màster
Xarxes neuronals (Informàtica)
Estructura molecular
Machine learning
Master's thesis
Neural networks (Computer science)
Molecular structure
Issue Date: 1-Jul-2019
Abstract: [en] Deep generative networks are an emerging technology in drug discovery. Our work is divided in two parts. In the first one, we built a variational autoencoder (VAE) that is able to learn the grammar of the molecules, represent them in a latent space, and generate new ones. In the second one, we built and trained a conditional variational autoencoder (CVAE) that is capable of generating new molecules based on desired properties. We will see in detail the architecture of both models and how they were trained. The molecule properties were provided by the Chemical Checker (CC), a resource of processed, harmonised and integrated small-molecule bioactivity data. We will generate different molecules with different target properties, and we will check how close the properties of the generated molecules are from the target ones. These properties are called signatures. At the end of the project we sample CC signatures with different similarity to the input molecule signatures, and we show that the signatures of the molecules generated this way resemble the sampled signatures, meaning that we can generate new random molecules based on desired properties.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Jordi Vitrià i Marca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
159317.pdfMemòria1.69 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons