Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/162704
Title: A layer stripping approach for monitoring resistivity variations using surface magnetotelluric responses
Author: Ogaya Garcia, Xènia
Ledo Fernández, Juanjo
Queralt i Capdevila, Pilar
Jones, A.G.
Marcuello Pascual, Alejandro
Keywords: Electromagnetisme
Prospecció magnetotel·lúrica
Electromagnetism
Magnetotelluric prospecting
Issue Date: Sep-2016
Publisher: Elsevier B.V.
Abstract: The resolution of surface-acquired magnetotelluric data is typically not sufficiently high enough in monitoring surveys to detect and quantify small resistivity variations produced within an anomalous structure at a given depth within the subsurface. To address this deficiency we present an approach, called "layer stripping", based on the analytical solution of the one-dimensional magnetotelluric problem to enhance the sensitivity of surface magnetotelluric responses to such subtle subsurface temporal variations in resistivity within e.g. reservoirs. Given a well-known geoelectrical baseline model of a reservoir site, the layer stripping approach aims to remove the effect of the upper, unchanging structures in order to simulate the time-varying magnetotelluric responses at depth. This methodology is suggested for monitoring all kinds of reservoirs, e.g. hydrocarbons, gas, geothermal, compress air storage, etc., but here we focus on CO2 geological storage. We study one-dimensional and three-dimensional resistivity variations in the reservoir layer and the feasibility of the method is appraised by evaluating the error of the approach and defining different detectability parameters. The geoelectrical baseline model of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer is taken as our exemplar for studying the validity of the 1D assumption in a real scenario. We conclude that layer stripping could help detect resistivity variations and locate them in the space, showing potential to also sense unforeseen resistivity variations at all depths. The proposed approach constitutes an innovative contribution to take greater advantage of surface magnetotelluric data and to use the method as a cost-effective permanent monitoring technique in suitable geoelectrical scenarios.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.jappgeo.2016.06.014
It is part of: Journal of Applied Geophysics, 2016, vol. 132, p. 100-115
URI: http://hdl.handle.net/2445/162704
Related resource: https://doi.org/10.1016/j.jappgeo.2016.06.014
ISSN: 0926-9851
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
663703.pdf4.52 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons