Please use this identifier to cite or link to this item:
Title: Particle Swarm Optimization (PSO) and two real world applications
Author: Prat Martí, Albert
Director/Tutor: Gómez Muntané, Gerardo
Keywords: Intel·ligència artificial distribuïda
Anàlisi de Fourier
Tesis de màster
Computació evolutiva
Distributed artificial intelligence
Fourier analysis
Masters theses
Evolutionary computation
Issue Date: 10-Jul-2019
Abstract: [en] Particle Swarm Optimization (PSO) belongs to a powerful family of optimization techniques inspired by the collective behaviour of social animals. This method has shown promising results in a wide range of applications, especially in computer science. Despite this, a great popularity of such method has not been achieved. Since we believe in the potential of PSO, we propose the following scheme to be able to take advantage of its properties. First, an implementation from scratch in C language of the method has been done, as well as an analysis of its parameters and its performance in function minimization. Then, a second more specific part of this thesis is devoted to the adaptation of the method for solving two real-world applications. The first one, in the field of signal analysis, consists of an optimization method for the numerical analysis of Fourier functions, whereas the second, in the field of computer science, comprises the optimization of neural networks weights’ for some small architectures.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Gerardo Gómez Muntané
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
162998.pdfMemòria2.85 MBAdobe PDFView/Open
codi_font.zipCodi font10.21 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons