Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/163673
Title: Teoria de Donaldson i aplicacions a les varietats topològiques de dimensió 4
Author: Cancio Andel, Héctor
Director/Tutor: Gutiérrez Marín, Javier J.
Keywords: Varietats topològiques de dimensió 4
Treballs de fi de grau
Homologia
Topologia diferencial
Camps de galga (Física)
Four-manifolds (Topology)
Bachelor's thesis
Homology
Differential topology
Gauge fields (Physics)
Issue Date: 19-Jan-2020
Abstract: [en] The aim of this dissertation is to introduce the world of topological four-manifolds. The main result is Donaldson’s Theorem, which can be used to prove the existence of topological manifolds that admit no differentiable structure. First of all we will give preliminaries based on algebraic topology (cohomology mainly), following with tools of differential geometry (vector bundles, connections and the basics of gauge theories). In the most important part of this project we will check the proof of Donaldson’s Theorem and the definition of Donaldson’s invariants. We will use these results in order to see examples of manifolds that cannot have any differentiable structure as well as the construction of an exotic R 4 and various vanishing theorems.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Javier J. Gutiérrez Marín
URI: http://hdl.handle.net/2445/163673
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
163673.pdfMemòria724.15 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons