Please use this identifier to cite or link to this item:
Title: Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice
Author: Puigoriol Illamola, Dolors
Martínez-Damas, Mirna
Griñán Ferré, Christian
Pallàs i Llibería, Mercè, 1964-
Keywords: Malaltia d'Alzheimer
Salut pública
Ratolins (Animals de laboratori)
Alzheimer's disease
Public health
Mice (Laboratory animals)
Issue Date: 10-Feb-2020
Publisher: MDPI
Abstract: Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-kappa B pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 beta (GSK-3beta) inactivation, hyperphosphorylation of Tau and an increase in sAPPbeta protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Note: Reproducció del document publicat a:
It is part of: International Journal of Molecular Sciences, 2020, vol. 21, num. 3, p. 1154-
Related resource:
ISSN: 1661-6596
Appears in Collections:Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica)

Files in This Item:
File Description SizeFormat 
700731.pdf2.51 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons