Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/164239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGilibert, Miquel-
dc.contributor.authorAguilar Navarro, Antonio-
dc.contributor.authorGonzález Pérez, Miguel-
dc.contributor.authorSayós Ortega, Ramón-
dc.date.accessioned2020-06-04T07:33:18Z-
dc.date.available2020-06-04T07:33:18Z-
dc.date.issued1998-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/2445/164239-
dc.description.abstractThe effect of translational vibrational, and rotational energies on the dynamics of the N(4S,) +NO(X 211) -t N2(X '2:) +0( 'Pg) reaction has been examined using a Sorbie-Murrell analytical fitting of a grid of ab initio configuration interaction (CI) points for the 3A" ground potential energy surface reported by the authors in a previous work. Translational energy is shown to increase total reaction cross section for all the initial rovibrational states of reactants considered. The reaction mode analysis points towards a direct mechanism and a strong influence of the shape of the potential energy surface on the reactivity, especially at low relative collision energies. Vibrational excitation of the NO reactant molecule changes the total reaction cross section values moderately, while increasing the initial rotational states of NO at low fixed relative collision energies decreases the reaction cross section sharply, eventually becoming zero for the highest J values explored. By comparing with model calculations on the same surface involving extreme H+HL and L+ LH mass combinations, the microscopic reaction mechanism is shown to imply product molecules being created with rotational angular momentum (J') oriented preferentially antiparallel with respect: to their orbital angular momentum (1') at low relative energies, with loss of orientation for higher relative energies. Thus, the surface used indicates a strong vector correlation between 1' and J' and also an important influence in equipartitioning total angular momentum between the rotational and orbital angular momenta of products. Comparison with unfortunately scarce experimental data (e.g., fraction of vibrational energy in products and rate constants) shows a very good agreement.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.463787-
dc.relation.ispartofJournal of Chemical Physics, 1998, vol. 99, num. 8, p. 5542-5553-
dc.relation.urihttps://doi.org/10.1063/1.463787-
dc.rights(c) American Institute of Physics , 1998-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationDinàmica molecular-
dc.subject.classificationQuímica de superfícies-
dc.subject.otherMolecular dynamics-
dc.subject.otherSurface chemistry-
dc.titleDynamics of the N(4Su) + NO (X2Π) → N2 (X1Σg+) + O (3Pg) atmosferic reaction on the 3A'' potential energy surface. II. The effect of reagent translational, vibrational, and rotational energies-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec078595-
dc.date.updated2020-06-04T07:33:18Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
078595.pdf1.91 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.