Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/164297
Title: Switching operation modes in the neocortex via cholinergic neuromodulation
Author: Puigbó, Jordi-Ysard
Arsiwalla, Xerxes D.
González Ballester, Miguel Ángel
Verschure, Paul
Keywords: Aprenentatge
Cervell
Neurotransmissors
Learning
Brain
Neurotransmitters
Issue Date: 7-Dec-2019
Citation: Molecular Neurobiology, 2020, vol. 57, num. 1, p. 139-149
Abstract: In order to deal with the uncertainty in the world, our brains need to be able to flexibly switch between the exploration of new sensory representations and exploitation of previously acquired ones. This requires forming accurate estimations of what and how much something is expected. While modeling has allowed for the development of several ways to form predictions, how the brain could implement those is still under debate. Here, we recognize acetylcholine as one of the main neuromodulators driving learning based on uncertainty, promoting the exploration of new sensory representations. We identify its interactions with cortical inhibitory interneurons and derive a biophysically grounded computational model able to capture and learn from uncertainty. This model allows us to understand inhibition beyond gain control by suggesting that different interneuron subtypes either encode predictions or estimate their uncertainty, facilitating detection of unexpected cues. Moreover, we show how acetylcholine-like neuromodulation uniquely interacts with global and local sources of inhibition, disrupting perceptual certainty and promoting the rapid acquisition of new perceptual cues. Altogether, our model proposes that cortical acetylcholine favors sensory exploration over exploitation in a cortical microcircuit dedicated to estimating sensory uncertainty.
Note: Versió postprint del document publicat a: https://doi.org/10.1007/s12035-019-01764-w
It is part of: Molecular Neurobiology, 2020, vol. 57, num. 1, p. 139-149
URI: http://hdl.handle.net/2445/164297
Related resource: https://doi.org/10.1007/s12035-019-01764-w
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
MolNeuro2018_19.pdf1.52 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 7-12-2020


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.