Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/164559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharpentier, Philippe-
dc.contributor.authorOrtega Cerdà, Joaquim-
dc.date.accessioned2020-06-06T08:59:21Z-
dc.date.available2020-06-06T08:59:21Z-
dc.date.issued1996-06-01-
dc.identifier.issn0030-8730-
dc.identifier.urihttp://hdl.handle.net/2445/164559-
dc.description.abstractIn this work we prove in a constructive way a theorem of Rudin which says that if $E$ is an analytic subset of the bidisc $D^2$ (with multiplicities) which does not intersect a neighbourhood of the distinguished boundary, then $E$ is the zero set (with multiplicities) of a bounded holomorphic function. This approach allows us to generalize this theorem and also some results obtained by P.S.Chee.-
dc.format.extent20 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMathematical Sciences Publishers (MSP)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2140/pjm.1996.174.327-
dc.relation.ispartofPacific Journal of Mathematics, 1996, vol. 174, num. 2, p. 327-346-
dc.relation.urihttps://doi.org/10.2140/pjm.1996.174.327-
dc.rights(c) Mathematical Sciences Publishers (MSP), 1996-
dc.subject.classificationFuncions holomorfes-
dc.subject.classificationFuncions de diverses variables complexes-
dc.subject.classificationEspais analítics-
dc.subject.otherHolomorphic functions-
dc.subject.otherFunctions of several complex variables-
dc.subject.otherAnalytic spaces-
dc.titleOn the zero sets of bounded holomorphic functions in the bidisc-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec136634-
dc.date.updated2020-06-06T08:59:21Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
136634.pdf1.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.