Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/165741
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrats Garcia, Hèctor-
dc.contributor.authorGutiérrez, Ramón A.-
dc.contributor.authorPiñero, Juan José-
dc.contributor.authorViñes Solana, Francesc-
dc.contributor.authorBromley, Stefan Thomas-
dc.contributor.authorRamírez, Pedro J.-
dc.contributor.authorRodríguez, José A.-
dc.contributor.authorIllas i Riera, Francesc-
dc.date.accessioned2020-06-16T07:06:26Z-
dc.date.available2020-06-16T07:06:26Z-
dc.date.issued2019-04-03-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/2445/165741-
dc.description.abstractMethane is an extremely stable molecule, a major component of natural gas, and also one of the most potent greenhouse gases contributing to global warming. Consequently, the capture and activation of methane is a challenging and intensively studied topic. A major research goal is to find systems that can activate methane even at low temperature. Here, combining ultrahigh vacuum catalytic experiments followed by X-ray photoemission spectra and accurate density functional theory (DFT) based calculations, we show that small Ni clusters dispersed on the (001) surface of TiC are able to capture and dissociate methane at room temperature. Our DFT calculations reveal that two-dimensional Ni clusters are responsible of this chemical transformation, evidencing that the lability of the supported clusters appears to be a critical aspect in the strong adsorption of methane. A small energy barrier of 0.18 eV is predicted for CH4 dissociation into adsorbed methyl and hydrogen atom species. In addition, the calculated reaction free energy profile at 300 K and 1 atm of CH4 shows no effective energy barriers in the system. Comparing with other reported systems which activate methane at room temperature, including oxide and zeolite-based materials, indicates that a different chemistry takes place on our metal/carbide system. The discovery of a carbide-based surface able to activate methane at low temperatures paves the road for the design of new types of catalysts towards an efficient conversion of this hydrocarbon into other added-value chemicals, with implications in climate change mitigation.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/jacs.8b13552-
dc.relation.ispartofJournal of the American Chemical Society, 2019, vol. 141, num. 13, p. 5303-5313-
dc.relation.urihttps://doi.org/10.1021/jacs.8b13552-
dc.rights(c) American Chemical Society , 2019-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationCarburs-
dc.subject.classificationTitani-
dc.subject.classificationTeoria del funcional de densitat-
dc.subject.classificationHidrocarburs-
dc.subject.otherCarbides-
dc.subject.otherTitanium-
dc.subject.otherDensity functionals-
dc.subject.otherHydrocarbons-
dc.titleRoom temperature methane capture and activation by Ni clusters supported on TiC(001): effects of metal-carbide interactions on the cleavage of the C-H bond-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec693332-
dc.date.updated2020-06-16T07:06:26Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
693332.pdf5.72 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.