Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/165803
Full metadata record
DC FieldValueLanguage
dc.contributor.authorViñes Solana, Francesc-
dc.contributor.authorIglesias-Juez, Ana-
dc.contributor.authorFernandez-Garcia, Marcos-
dc.contributor.authorIllas i Riera, Francesc-
dc.date.accessioned2020-06-16T11:10:27Z-
dc.date.available2020-06-16T11:10:27Z-
dc.date.issued2018-08-23-
dc.identifier.issn1932-7447-
dc.identifier.urihttp://hdl.handle.net/2445/165803-
dc.description.abstractIn the context of bandgap engineering of the ZnO photoactive material for solar harvesting applications via W doping, a number of a priori discrepant experimental observations in the literature concerning ZnO c axis expansion/contraction, bandgap red- or blue-shifting, the Zn-substitutional or interstitial nature of W atoms, or the W6+ charge compensation view with ZnO native defects are addressed by thorough density functional theory calculations on a series of bulk supercell models encompassing a large range of W contents. The present results reconcile the at first sight dissimilar observations by showing that interstitial W (Wi) is only energetically preferred over substitutional (WZn) at large large W doping concentrations; the WZn c lattice expansion can be compensated by a W triggered Zn-vacancy (VZn) c lattice contraction. The presence of WZn energetically fosters nearby VZn defects, and vice versa, up to a double VZn situation. The quantity of mono or divacancies explains the lattice contraction/expansion, and both limiting situations imply gap states which reduce the band gaps, but increase the energy gaps. Based on present results, the ZnO band gap red-shifting necessary for solar light triggered processes is achievable by W doping in Zn rich conditions.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpcc.8b06881-
dc.relation.ispartofJournal of Physical Chemistry C, 2018, vol. 122, num. 33, p. 19082-19089-
dc.relation.urihttps://doi.org/10.1021/acs.jpcc.8b06881-
dc.rights(c) American Chemical Society , 2018-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationFerromagnetisme-
dc.subject.classificationTeoria del funcional de densitat-
dc.subject.classificationAliatges binaris-
dc.subject.otherFerromagnetism-
dc.subject.otherDensity functionals-
dc.subject.otherBinary systems (Metallurgy)-
dc.titleUnderstanding W doping in wurtzite ZnO-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec696482-
dc.date.updated2020-06-16T11:10:27Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
696482.pdf3.56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.