Please use this identifier to cite or link to this item:
Title: Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo
Author: Diniz, F. R.
Maia, R. C. A. P.
Rannier, L.
Andrade, Luciana N.
Chaud, M. V.
da Silva, C. F.
Corrêa, C. B.
de Albuquerque Junior, R. L. C.
da Costa, L. P.
Shin, S. R.
Hassan, S.
Sánchez-López, E. (Elena)
Souto, Eliana B.
Severino, Patrícia
Keywords: Biopolímers
Ferides i lesions
Wounds and injuries
Wound healing
Issue Date: 23-Feb-2020
Publisher: MDPI
Abstract: Polymer hydrogels have been suggested as dressing materials for the treatment of cutaneous wounds and tissue revitalization. In this work, we report the development of a hydrogel composed of natural polymers (sodium alginate and gelatin) and silver nanoparticles (AgNPs) with recognized antimicrobial activity for healing cutaneous lesions. For the development of the hydrogel, different ratios of sodium alginate and gelatin have been tested, while different concentrations of AgNO3 precursor (1.0, 2.0, and 4.0 mM) were assayed for the production of AgNPs. The obtained AgNPs exhibited a characteristic peak between 430-450 nm in the ultraviolet-visible (UV-Vis) spectrum suggesting a spheroidal form, which was confirmed by Transmission Electron Microscopy (TEM). Fourier Transform Infra-red (FT-IR) analysis suggested the formation of strong intermolecular interactions as hydrogen bonds and electrostatic attractions between polymers, showing bands at 2920, 2852, 1500, and 1640 cm−1. Significant bactericidal activity was observed for the hydrogel, with a Minimum Inhibitory Concentration (MIC) of 0.50 µg/mL against Pseudomonas aeruginosa and 53.0 µg/mL against Staphylococcus aureus. AgNPs were shown to be non-cytotoxic against fibroblast cells. The in vivo studies in female Wister rats confirmed the capacity of the AgNP-loaded hydrogels to reduce the wound size compared to uncoated injuries promoting histological changes in the healing tissue over the time course of wound healing, as in earlier development and maturation of granulation tissue. The developed hydrogel with AgNPs has healing potential for clinical applications.
Note: Reproducció del document publicat a:
It is part of: Nanomaterials, 2020, vol. 10, num. 2, p. 390
Related resource:
ISSN: 2079-4991
Appears in Collections:Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))
Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
701298.pdf7.71 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons